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COLLISION OF POLYMER PARTICLE WITH RIGID BARRIER 

B. M. Khusid UDC 536.25:532.135 

The article establishes a correlation of the relaxation spectrum with the dis- 
sipation of kinetic energy of a polymer particle upon impact. 

Impact of polymer particles against a rigid barrier is encountered in many technological 
processes: in the application of polymer coatings by spraying, in the production of compo- 
site materials, in dispersion, etc. For comparatively low velocities, when the dynamic head 
is smaller than the modulus of elasticity: 0Uo = ~ G(ti) , the principal influence on the char- 
acteristics of the impact is exerted by the rheological properties of the polymer. For small 
bodies: Z << cti, c = G~ is the velocity scale of the shear wave, the problem of impact may 
be dealt with in quasistatic approximation, which is widely used in the theory of elastic bod- 
ies [i]. For calculating the deformation of a particle upon impact the results of the solu- 
tion of contact problems are used. In view of the comparatively small deformations, the rheo- 
logical properties of the polymer are described by the linear theory of viscoelasticity. The 
solution of the contact problem for viscoelastic material is constructed with the aid of the 
principle of correspondence proceeding from the relations for elastic material with analogous 
geometry [2, 3]. In [4] the impact of a polymer particle was examined for the case of forces 
of adhesion originating on the contact spot. This made it possible to estimate the force of 
adhesion required for maintaining the particle on the barrier. The present article examines 
impact without adhesion. In that case the particle rebounds from the barrier. The decrease 
of its kinetic energy is determined solely by viscous losses in the polymer. To evaluate the 
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Fig. i. Radius of the region of contact; a(t) = a(t, (t)) for t > tm. 

Fig. 2. Restitution coefficient K(8). K, %. 

Fig. 3. Dependence of the specific dissipated energy E d on the speed of impact 
Uo for PMMA (i) and PS 9.85 (2), 8.09 (3) mm: I, II) empirical formulas [i0]; 
III) Ed = 0.0831Uo 2"2. Ed, J/kg; Uo, m/sec. 

relaxational properties of a polymer, it is common practice at impact to measure the restitu- 
tion coefficient K which is equal to the ratio of the kinetic energies of the particle after 
and before the collision [5]. However, the formulas used for that are based primarily on re- 
lations which were derived under such conditions that stress relaxation in the polymer was re- 
garded as a small correction only (see [5]). 

A direct impact of a viscoelastic particle proceeds in two stages. At the first stage 
(t <__ t m) the particle becomes deformed, its speed in the direction to the barrier is reduced, 
the region of contact becomes wider, part of the kinetic energy changes into elastic strain 
energy. At the second stage (t > tm) there occurs "unloading" in reverse deformation, the re- 
gion of contact becomes smaller, part of the elastic energy changes into kinetic energy, and 
the particle moves away from the barrier. The mathematical formulation of the problem of im- 
pact consists of the following equations (see [4]): 

first stage (U in the direction toward the barrier) 

M dU F( t ) ,  dh 
a t  - -  --dT-=v; hl,=0=O, Vl,=o=Uo, (1) 

second stage (U in the direction from the harrier) 

M d---~U -~-F(O , dh U; hl,=t,.--~h .... Ul ,=t~=O. (2) 
clt dt " 

The v a l u e s  of  hat, tm a r e  de t e rmined  from the  s o l u t i o n  o f  sys tem (1 ) .  The c o r r e l a t i o n  between 
the  f o r c e  F, t he  d i s p l a c e m e n t  h ,  and the  r a d i u s  of  t he  c o n t a c t  spo t  a i s  g iven  by the  fo rmulas  
[2, 3] : 

h(O 

8 ~ G( t - - t ' )da3( t ' ) ,  (3) 
F =  3R(1--~) o 

first stage 

second stage 

h= a~(t) (4) 
R ' 

t 

t m fi(*') 

The Poisson ratio 9 is regarded as constant. The functions of relaxation and creep are inverse 
to each o t h e r :  

t 

a ( t - - t ' ) d ]  (t,) = 1. (6) 
0 

The function G(t) is correlated with the spectrum H(X) by the dependence [5, 6]: 
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I4 (~)  t G(t)= j----i---exp(----~ )dL 
o 

At the first stage of the collision tx(t) = t, and at the second stage the time t1(t) corres- 
ponds to the instant preceding tm when the radius of the region of contact a(t) is equal to 
its preceding value a(tx(t)) (Fig. i) [2, 3]. For viscoelastic material, in distinction to 
elastic material, the dependence a(t) is asymmetric relative to the value of tm. The differ- 
ence is that the correlation between the displacement of the center of gravity and the radius 
of the region of contact is determined at the first stage only by the simple geometric rela- 
tion (4). It should be noted that in view of the smallness of deformations of bodies in col- 
lision at low speed (pUo 2 < G) the system of Eqs. (1)-(5) also describes the collision of a 
rigid particle with a polymer barrier (see [3]). 

In [7] (see also [4]) a method was worked out for the numerical solution of the problem 
(1)-(5). The results of computer calculations were presented in [4]. We will carry out an 
analytical investigation of this problem using a method suggested in [8]. The effect of the 
section of relaxation spectrum with times longer than ti will be regarded as elastic, with 
shorter times as viscous. Then 

ti oo 

j ' _ ~  ( ) [ H(~)_exp( t ) 1 ( t )  G(t) ~ o exp _ ~ t  :d~+ t." )~ - - - -~  d~ , ~ i S ( t ) + G i ,  6(t)~ lim--~- exp~.~0 -- . (7) 
1 

o o  t i 

Here, Gy= ~H(~)dln~, ~:i~ ~H(;~)dL are the effective values of elasticity and viscosity of 
t. 0 
I 

a liquid at impact. For (7) the function of creep is written in the form [see (6)] : 

J=--a- - V j  

These expressions simplify the relations (3), (5)" 

8 2 da F= 3R(t--v)( ), t~t .~;  Giaa+3~li a ~ 

8 
F= 3R(1--v) Gia3' t>tm;  

t 

1 h = - - - ~ [ a 2 ( t ) - - Z  i ; [l--exp ( t - - t '  d2a 2 
t m  ~ 

The results of numerical calculations of the collision of a viscoelastic particle pre- 
sented in [4] confirm the applicability of assumption (7). In that case the system of inte- 
grodifferential Eqs. (1)-(5) is equivalent to the system of differential equations which in 
the dimensionless values t = toT, U = Uou, h = hoy, a = aox, F = Ff, G(t) = Gog(T) is written 
in the form: 

du 3 "2 3 1 "2 dy 
dx - - - - g l y  / - - - ~  g2Y ~ u, -d, = u ,  

y = x L  u]~=o=l, y[~=o=O; 
du ~__gly~/2, dye ~-----U--g2y3e/~ ' 

d---4 .--dT-~ " 

(8) 

y = y e +  ~ u, ye=X 2, 
(9) 

Here, 
Gt ~i t o =  oR 

g l =  ---~o' g2--~ Goto ' U'----~ , ho--=oR, ao=colnR, 

8GoR2r 
F o  ~ 3(l-v)  

[ #x(l__v)oU0 2 ]2/5 
o-- 7 2--~o 

1389 



t i 

O0 

I0 

zl 

I00 

' BR 

5 /~ O0 
20 

I0 
__ a 

// x--9 4 

' ' ' ,,,o~i/~z+ Z / + /0/o , . - - I  
~nUo t 

7 
i++++++- NR 

8 

x~ 7 BR 

~...9. + / / [ _  b 
�9 -2 *--5 
o - 3  x-6 

l I I I 

g ~ /0 2O t ;  
1 

Fig. 4. Dependences: a) elastic medium G = 1.4,106 Pa (i); 
spheres with diameter (cm) 0.87 (2); 2.54 (3); 5.08 (4) [ii]; 
calculation for viscoelastic medium (5); b) spheres with dia- 
meter 0.64 (i); 0.87 (2); 1.27 (3); 2.54 (4); 3.81 (5)I 5.08 
(6) [ii]; calculation for viscoelastic medium (7, 8, 9). t i, 
msec; (MU/RUo) I/', (kg2,sec/ml)I/". 

the parameter m is small. The particle becomes detached from the barrier when at the second 
stage Ye = 0. The dependences of the dimensionless time of impact ~i and of the restitution 
coefficient K on the parameters g,, g2 are determined from the expressions: 

"~i (g~' g2)='~ly~=o, K(g,,  g2)=u2ly~=o. 

Transformation of the system (8), (9) : 

u, "% y, y~-+u', g-(2/5~,, g-{2/Sy,, g~-2/sy~ 

is equivalent to the transition in it to new coefficients: 

g,, g=--~l, g21g~/5. 

In particular, these relations show that the duration of impact and the restitution coefficient 

are determined by only one parameter g2/g, 3/5. Thus the restitution coefficient is correlated 
with the duration of the collision by the universal relation K = K(~), ~ = ni/Giti, which does 
not depend on the mass of the particle, its speed, or the radius of curvature at the point of 
contact. In parametric form it is described by the expression: 

K=u~( l g__.__~2 )!] ,-[3= g2 
' g31/5 ye=0 

1 --1 

This result is the consequence of the approximation (7) in which the relaxation spectrum is 
characterized all in all by the two integral parameters ~i(ti) and Gi(ti). 

Having determined the dependence 8 = 8(ti) from measurements of the restitution coeffi- 
cient and of the duration of the impact, we can calculate the relaxation characteristics of 
the polymer. Since 

aai.=H(q)= ~n~,. 
- - t i  dt i . dt i , 

we obtain after differentiating the relation qi = Giti8: 

dlnOi =-- [1-f d ln[~  
dt i ~ dlnt i / 

If we approximate the function of 8 by the power dependence 8 = (T/tl)q, we have 

1 - - q  1 - - q  _ 

Gi~C[l+(T/ti) q ~, %----cr[l+(t~/r)q] ~, 

( l - - q )  G i 
H ( t i )  = l + ( t d r , i  - . .  

(io) 
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For calculating the integration constant C in these expressions additional experimental data 
are required. 

Let us find the behavior of the magnitudes ri and K when the proportion of the dissipated 
energy is small (g= << gl) and when it is large (g2 >> gl). When g= << gz, the difference be- 
tween the motions of the viscoelastic and the elastic particles is small. Then ~i z ~i(l,O) = 
(4/5)a/SB(2/5, 1/2) [I], and for calculating K it suffices to calculate the work of the vis- 
cous forces along the path of motion of the elastic particle. This yields: 

K,..~ I_3 (__~ )i2/~B ( 3 3 )  g~ 
2 ' 5 ~--77g-o ~ 1--3,460 g~ ~ / s  �9 

o I o I 

We obtain the same result if we seek the solution of Eqs. (8), (9) in the form of a series 
with powers of g= and confine ourselves to the first term. Thus, with small values of 8: 

120~ ~ ~ =1- -11 ,136  ~. (ii) K =  1 - - ~ - ~ ] - -  ~g lO- 

To construct the asymptotic formulas for g~ >> gz, we go over in Eqs. (8), (9) to the values 
= u, y = g~=/Sy, Ye = g==/SYe, ~ = g=~/sY. s equations in respect to these variables 

are obtained by replacing the coefficients g~, g= + ~ = g~/g~/~,l. To construct the asymptotic 
solution of the problem for ~ << i we use the method of singular disturbances [9]. At the first stage 
of the collision the external and the internal expansion are constructed in the form of series with 
powers of U. In the boundary layer the internal variable is u~. The compound asymptotic ex- 
pansion for large 7, found by a method that was described in detail in [9], is written in the 
form (here we use the solution of the problem for a viscous liquid with g~ = O, g~ = I [4]): 

2 

2 

From this we find the instant when the particle stops and the largest displacement of its 
center of gravityz 

z m ~  ~ In 2~  6 ' 

For approximate calculations we may put ~m = i - 2U (~m -- 1)/3. At the second stage of the 
collision the external expansion is constructed in the form of a series with powers of p, and 
the internal expansion with powers of p,/3. The variable of the boundary layer is ~I/a(7 -- 
7m). Directly from the equations for the second stage (9) we findz 

For  l a r g e  v a l u e s  o f  (7 -- 7m) t h e  compound a s y m p t o t i c  e x p a n s i o n  f o r  ~e i s  w r i t t e n  i n  t h e  fo rm:  

The use of these relations yields 

1 ( 4~ 2~ 1/3 
7i(~,  1 ) ~ +  v~-,/~ ~ i ~ X(~ / '  K---- (12) 

y~ 3 3 ~ 

When t h e  p o l y m e r  ha s  h i g h  v i s c o s i t y  (~ << 1 ) ,  a l a r g e  p a r t  o f  t h e  k i n e t i c  e n e r g y  i s  d i s s i p a t e d  
at the first stage of the collision. The shape of the particle is not restored at the second 
stage. The ratio of the durations of the first and the second stage is of the order u~/31n(i/ 
p). Expressions (12) and the formula B = I/P~i(~ , i) determine the function K(B) in paramet- 
ric form when 8 is large. 

For the numerical solution of Eqs. (8), (9) we used the Runge-Kutta method of second or- 
der. At the first stage the calculations ended with u = 0, at the second stage with Ye = 0. 
As scale of the shear modulus we took Go = G i + hi/to, then gx + g2 = i. According to the re- 
suits of numerical calculations, the dependence K(~) is plotted in Fig. 2. A comparison with 
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the asymptotic formulas shows that with an accuracy of the order of 10%, the approximation of 
small 8 is applicable with K ~ 0.7 and of large 8 with K ~ 0.02. 

In experimental work concerned with collisions of polymer particles, most authors 
confined themselves to calculating the proportion of lost energy (i -- K) which was treated as 
the logarithmic decrement of the attenuation of free vibrations with frequency */2 t i [5]. 
More informative experiments are reported in [i0, ii]. Okuda and Choi [I0] studied the colli- 
sion of spheres of polymethyl metacrylate (PMMA) and of polystyrene (PS) with a metallic tar- 
get. The experiments were carried out at room temperature at which both polymers are in a 
vitreous state. The diameter of the spheres of PMMA was 9.8 mm, of PS 9.85, 8.09 mm, the 
speed was 35 to 200 m/set, duration of impact from 2.10 -5 to 10 -~ sec. The static shear mod- 
ulus and density of PMMA were 1.39.109 Pa, 1.2,10 S kg/mS; of PS 1.26.109 Pa, 1.46-103 kg/m 3, 
respectively. For these experiments PUo2/2G ~ 0.02. The experiments showed that the maximal 
values of force and deformation of the spheres with Uo ~ 100 m/set are in good agreement with 
the calculations by Hertz' formula (elastic sphere) using the static shear modulus. For most 
speeds the calculated values are higher than the experimental ones. Figure 3 shows the de- 
pendences of the specific dissipated energy (per unit mass) on the speed. The experimental 
data of [i0] are described by the formulas Ed = 0.0439Uo z'35 for PMMA and E d = 0.146Uo 2~ 
for PS. The analytical solution of the system (8), (9) in the approximation of low viscosity 
yields 

Ed~- 1,444~iU~,2/p~ (l--v) ~ (13) 

The dependence on the  speed (13) i s  i n  good agreement  w i th  the  da ta  f o r  PS, and in  somewhat 
poorer  agreement fo r  PMMA. However, i t  can be seen from F ig .  3 t h a t  the  da t a  f o r  PMMA are  
a l s o  f u l l y  d e s c r i b e d  by the  e x p r e s s i o n  F d = 0.0831Uo 2"2 which i s  in  agreement wi th  (13) .  By 
using the static shear moduli, we can determine hi. For PMMA ~i = l-l'10s Pa,sec, for PS 
Di z 103 Pa.sec. Then H(t i) ~ ~i/ti ~ i0" Pa.sec; this corresponds to the values of the re- 
laxation spectrum [5] for the B-process of PMMA and PS (small-scale sections of the chain) at 
room temperature. 

Southern and Thomas [ii] investigated the collision of steel balls with diameters from 
0.625 to 5 cm with rubber at room temperature and at speeds from 0.03 to 1.7 m/set, duration 
of the impact from i0 -S to 2.10 -2 sec. The experiments were carried out with specimens of 
natural rubber (NR) vulcanized with the aid of 1 and 6 (weight) % dicumyl and with specimens 
of butyl rubber (BR) vulcanized by a vulcanizing group with 2 (weight) % sulfur. Vulcaniza- 
tion was carried out at 150~ for 1 h. The tensile moduli of elasticity measured in the 
course of several minutes are 0.9QI06 and 2.9.106 Pa for NR, and 1.4,106 Pa for BR. These 
experiments reveal the properties of polymers in the transition zone from vitreous to highly 
elastic where the relaxation processes are determined by the motion of sections of the macro- 
molecule [5, 6]. For experiments [ii] pUo2/2G S 0.03. The times of collision for NR are in 
good agreement with the calculations by Hertz' formula using the "minute" moduli of elasticity. 
For BR the calculated values are higher than the experimental ones (see Fig. 4a with the data 
of [Ii]). With increasing duration of the collision the difference becomes smaller. The de- 
pendences of the restitution coefficient on the duration of the collision for NR (with denser 
space network) and BR with different speeds and sizes of the spheres (Fig. 4b) confirm that a 
universal relation K(~) exists. The data for NR are described by the linear Eq. (ii). This 
makes it possible to estimate ~i/Gi ~ (4.3-4.9).i0 -s sec, then ~i ~ 50 Pa.sec, H(t i) 2.5-10 ~ 
Pa, which in order of magnitude is in agreement with the values for NR [5]. For BR the dependence 
K(ti) is described by a power law. A comparison of the values of the restitution coefficient 
with the results of numerical calculations of the dependence K(8) shows that for BR 8 = (T/ti)q 
for T = 1.517,10 -S sec, q = 0.362 (Fig. 4b). Using the formula for the collision of a visco- 
electric medium, we obtain the relation: 

F 3(1--~) t i = (  (14) 
g2 ~ " 

The function 8(t i) determines the dependence G(t i) with an accuracy up to the integration con- 
stant in (i0). With its value equal to 0.87 G e (G e is the "minute" modulus), the calculated 
values of the duration of the collision correspond to the experimental data for BR (Fig. 4a). 
In the range from 2.10 -S to 2.10 -~ sec the ratio G(ti)/G e drops from 2.7 to 1.6, viscosity in- 
creases from 2.3,10 S to 5.7-i0 S Pa*sec, the negative slope of the relaxation spectrum H(1) in 
logarithmic coordinates is 0.47. The obtained data for BR are in agreement with the behavior 
of elastomers in the transition region [5, 6]. 
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NOTATION 

K, restitution coefficient; Uo, speed of impact; G(t), relaxation function; J(t), creep 
function; ~, Poisson ratio; p, density of the material; ti, duration of the collision; M, mass 
of the particle; tm, instant of maximal deformation of the particle; h, displacement of the 
center of mass of the particle; F, force acting from the side of the barrier; a, radius of 
the contact spot; R, radius of curvature of the particle at the point of contact; H(I), re- 
laxation spectrum; Go, scale of the shear modulus~ ~(t), Dirac's delta function; B(x, y), 
beta function~ Ed, specific dispersed energy. 
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EFFECT OF LONGITUDINAL DIFFUSION ON SEPARATION 

OF GAS MIXTURES USING SEMIPERMEABLE MEMBRANES 

E. B. Gruzdev, V. K. Ezhov, 
N. I. Laguntsov, and B. I. Nikolaev 

UDC 621.593.001.24 

Flow of a binary gas mixture in a cylindrical channel is studied considering 
presence of longitudinal diffusion fluxes of the components, as occurs in sep- 
aration of gas mixtures using semipermeable membranes. 

This study will consider transport of binary gas mixtures in a cylindrical channel with 
selectively permeable walls with consideration of diffusion motion of the mixture in the long- 
itudinal direction, caused by a change in component concentration along the channel produced 
by their differing abilities to penetrate the wall. The results are applicable primarily to 
separation of gas mixtures and extraction of a target product of specified composiion using 
membranes of metal, glass, polymers, etc. [1-3]. 

As a rule, in studies of mixtures in channels with semipermeable walls the literature as- 
sumes idealized flow models, the so-called ideal displacement model, corresponding to the case 
in which the longitudinal diffusion flux of a component in the channel is much less than the 
convective flow, or the total mixing model, based on the assumption that because of intense 
mixing in the channel, component concentrations constant over length are established [3, 4]. 
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